Such an effect would not be anticipated in $\mathrm{MeN}\left(\mathrm{PF}_{2}\right)_{2}$ if the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ backbone were rigid due to nitrogen \rightarrow phosphorus π bonding. ${ }^{9}$ Extrapolation from the well studied dimethylaminodifluorophosphine, $\mathrm{Me}_{2} \mathrm{NPF}_{2}$, substantiates this contention of a $\mathrm{p}_{\pi}-\mathrm{d}_{\pi}$ interaction enhanced by the presence of electronegative fluorine atoms. Thus, Nordman's X-ray diffraction study ${ }^{26}$ has revealed C_{5} molecular symmetry for $\mathrm{Me}_{2} \mathrm{NPF}_{2}$ (a mirror plane containing the $\mathrm{P}-\mathrm{NC}_{2}$ moiety and bisecting the FPF angle). The P-N distance at $1.63 \AA$ is in the range of $\mathrm{P}=\mathrm{N}$ multiple bond distance found in phosphonitrilic derivatives. ${ }^{27}$ The short bond and the planarity about nitrogen strongly suggest $\mathrm{N} \rightarrow \mathrm{P}$ multiple bonding in $\mathrm{Me}_{2} \mathrm{NPF}_{2}$.

Since the sign and magnitude of ${ }^{2} J_{\mathrm{PP}}$ in $\mathrm{F}_{2} \mathrm{PSPF}_{2}$ and $\mathrm{MeN}\left(\mathrm{PF}_{2}\right)_{2}$ are the same, it seems reasonable to conclude that similar mechanisms are responsible for the transmission of spin-spin coupling between the phosphorus nuclei in both cases.

We are led to speculate that $3 \mathrm{p}_{\pi}-3 \mathrm{~d}_{\pi}$ bonding, such as that implied for the PSP backbone, is less rigid than the $2 \mathrm{p}_{\pi}-3 \mathrm{~d}_{\pi}$ bonding proposed for the nitrogen homolog. It is not clear, however, whether the size of the orbitals involved in the π backbone, or alternatively,
(26) C. E. Nordman and E. D. Morris, Inorg. Chem., 8, 1673 (1969). (27) D. P. Craig and N. L. Paddock, J. Chem. Soc., 4118 (1962).
the number of lone-pair electrons in the bridging moiety affects the rigidity.

A through-space mechanism ${ }^{28}$ or a through-bond mechanism may be responsible for the transmission of the PP coupling. However, it is difficult to imagine how a through-space effect could be present in $\mathrm{F}_{2} \mathrm{PSPF}_{2}$ and not in $\mathrm{F}_{2} \mathrm{POPF}_{2}$, where the shortness of the $\mathrm{P}-\mathrm{O}$ bond relative to the $\mathrm{P}-\mathrm{S}$ bond should offset any expansion of the geminal angle in the oxygen compound. Nevertheless, because of the geometry of these systems, it is reasonable to expect that through-space coupling would only be significant for ${ }^{2} J_{\mathrm{PP}}$, and thus it might explain why the percentage variations with temperature of the 3- and 4-bond couplings in $\mathrm{F}_{2} \mathrm{PSPF}_{2}$ are much less than those for ${ }^{2} J_{\mathrm{PP}}$.

Certainly, structural data on all the $\mathrm{P}-\mathrm{X}-\mathrm{P}$ systems mentioned here will be of considerable value in explaining the nmr results. Also, the preparation and investigation of $\mathrm{F}_{2} \mathrm{PP}(\mathrm{R}) \mathrm{PF}_{2}$ species should provide data pertinent to the role of p_{π} orbital size.

Acknowledgment. The frequency synthesizer was purchased with funds from the Research Corporation and the University of Colorado Council on Creative Research. R. A. N. also acknowledges support from the National Institutes of Health, Grant GM 16264-01.
(28) L. Petrakis and C. H. Sederholm, J. Chem. Phys., 35, 1243 (1961).

Electron Paramagnetic Resonance Studies of Phosphorus-Containing Reactive Intermediates ${ }^{19}$

G. F. Kokoszka ${ }^{1 b, 1 c}$ and F. E. Brinckman ${ }^{1 b}$
Contribution from the National Bureau of Standards, Washington, D. C. 20234, and the State University of New York, College at Plattsburgh, Plattsburgh, New York 12901. Received August 8, 1969

Abstract

Several novel phosphorus-containing radicals have been produced at -196° by photolytic methods and characterized by epr spectrometry. In addition to the formation of $\mathrm{PCl}_{2}(A(\mathrm{P})=92 \mathrm{MHz} ; g=2.018)$ in neat parent PCl_{3}, a secondary reaction has been observed which yields $\mathrm{PCl}_{4}\left(A(\mathrm{P})=3398 \mathrm{MHz} ; A^{\prime}(\mathrm{Cl})=175 \mathrm{MHz}\right.$; $A^{\prime \prime}(\mathrm{Cl})=21 \mathrm{MHz} ; g=2.013$). Appropriate modification of the parent matrix by either cocondensation of inert diluent (Xe) or possibly reactive materials $\left(\mathrm{PF}_{3}, \mathrm{SnCl}_{4}\right)$ results in useful additional spectral information. Thus in $\mathrm{PF}_{3}: \mathrm{PCl}_{3}(1: 10)$ the full anisotropy of PCl_{2} is revealed $\left(A_{\|}(\mathrm{P})=753 \mathrm{MHz} ; A_{\perp}(\mathrm{P})=78 \mathrm{MHz} ; A_{\|}(\mathrm{Cl})=41.5\right.$ $\mathrm{MHz} ; A_{\perp}(\mathrm{Cl})=0 \mathrm{MHz} ; g_{\|}=2.001 ; g_{\perp}=2.021$). In contrast to neat PCl_{3}, irradiation of $\mathrm{Xe}: \mathrm{PCl}_{3}(9: 1)$ does not result in formation of PCl_{4}, presumably from inhibition of $\mathrm{Cl}+\mathrm{PCl}_{3} \rightarrow \mathrm{PCl}_{4}$ by competitive Cl recombination. Irradiation of $\mathrm{SnCl}_{4}: \mathrm{PCl}_{3}(6: 1)$ results in formation both of PCl_{2} and PCl_{4}. Several related organophosphines were also irradiated, but only with $\mathrm{CH}_{3} \mathrm{PCl}_{2}$ was evidence obtained suggesting formation of a four-coordinate radical similar to $\mathrm{PCl}_{4}(A(\mathrm{P})=3015 \mathrm{MHz}, g=2.000)$. In all cases, however, epr data are consistent with bond scission of the ternary phosphine to produce PCl_{2}-like fragments. The above results are discussed in light of their bearing on the role of reactive intermediates in synthetic chemistry, and considerations of molecular geometric and orbital composition are presented with reference to current MO and electrostatic models.

TThe main group V elements form both neutral threecoordinate compounds and, with the exception of nitrogen, neutral five-coordinate compounds. Both of these types are of interest in terms of (1) their stereochemistry and (2) the nature and orbital composition

[^0]of their bonds. The simplest case of a group V atom forming both three- and five-coordinate halogen compounds is phosphorus. Several recent theoretical papers have described the bonding in five-coordinate phosphorus compounds including such aspects as d-orbital participation and the relationship between stereochemistry and relative electronegativities in the mixed halo compounds. ${ }^{2,3}$

Figure 1. The spectrum of a mixtue of $\mathrm{PCl}_{3}: \mathrm{PF}_{3}$ in a ratio of about 10:1. The outermost lines are attributed to atomic hydrogen. The abscissa is in units of gauss ($10^{4} \mathrm{G}=1$ tesla).

Since uncharged pentacoordinate phosphorus compounds contain no unpaired electrons, the electron paramagnetic resonance technique cannot be expected to produce any experimental data to verify or dispute theoretical findings. On the other hand, the four-coordinate radical PF_{4} is known and believed to be nearly trigonal bipyramidal, with the unpaired electron occupying an equatorial position. ${ }^{4.5}$ Additional data on other trigonal bipyramidal phosphorus radicals should be welcomed at this time not only to compare the results with the PF_{4} species, but also to relate these data to the theoretical models for other halogenated species. Such a detailed theoretical analysis of the relationship between the isotropic hyperfine splittings and the molecular structure of the PF_{4} radical has appeared. ${ }^{6}$ There, Higuchi has calculated the molecular angles from both a valence bond as well as a molecular orbital point of view. Appreciable hybridization with the phosphorus d orbitals was incorporated in this treatment, although exclusion of d-orbital participation has been proposed by other authors. ${ }^{3}$

A preliminary account of the generation of new chlo-rine-containing phosphorus radicals has already appeared, ${ }^{12,7}$ and the present paper discusses, in addition to the interesting case of PCl_{4}, related species which permit consideration of several bonding models including the Higuchi case.

Just as the PX_{4} species are believed to have considerable importance in providing data for enhancing the understanding of the PX_{5} species, so also is it desirable to obtain data on PX_{2} molecules in order to provide some insight into the nature of the electronic distribution in that radical and in the related PX_{3} system. The PF_{2} radical was first reported by Wan, et al., ${ }^{8}$ as a freely rotating species. Recently, a preliminary spectrum associated with the PF_{2} species undergoing hindered rotation was reported by Gendell, Wei, and Current. ${ }^{9}$ The PCl_{3} species is known to contain three $\mathrm{P}-\mathrm{Cl}$ bonds
(2) (a) P. C. Van der Voorn and R. S. Drago, J. Amer. Chem. Soc., 88, 3255 (1966); (b) R. S. Berry, M. Tamres, C. J. Ballhausen, and H.' Johansen, Acla Chem. Scand., 22, 231 (1968); (c) R. M. Gavin, J. Chem. Educ., 46, 413, (1969).
(3) R. P. Brown and J. B. Peel, Aust. J. Chem., 21, 2589, 2605, 2617 (1968).
(4) (a) J. R. Morton, Can. J. Phys., 41, 706 (1963); (b) P. W. Atkins and M. C. R. Symons, J. Chem. Soc., 4363 (1964).
(5) R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 45, 1845 (1966).
(6) J. Higuchi, ibid., 50, 1001 (1969).
(7) G. F. Kokoszka and F. E. Brinckman, Chem. Commun., 349 (1968).
(8) J. K. S. Wan, J. R. Morton, and H. J. Bernstein, Can. J. Chem., 44, 1957 (1966).
(9) J. Gendell, M. Wei, and J. Current, Abstracts, 157th National Meeting of the American Chemical Society, Minneapolis, Minn., April 1969, No. PHYS 041. The authors wish to thank Professor Current for providing an opportunity to examine his detailed results for the PF_{2} radical which will appear in a forthcoming paper.

Figure 2. The complete spectrum from neat PCl_{3} following 4 hr of irradiation at 253.7 nm . The center portion is attenuated by a factor of 10 for clarity. The lines at about 2800 and 3300 G are attributed to atomic hydrogen. The abscissa is in units of $\mathrm{G}\left(10^{4} \mathrm{G}\right.$ $=1$ tesla).
at roughly right angles to one another, suggesting that each of these bonds contains orbital contributions chiefly from each of the three phosphorus $3 p$ orbitals. Removal of one of the chlorine atoms might then be expected to result in a single unpaired electron residing in a p orbital perpendicular to the molecular plane. Such a result will be shown to be consistent with the experimental data to be presented in this paper. A semiquantitative estimate of the delocalization of the unpaired electronic density into the chlorine 3 p orbitals will also be considered.

Often, useful epr spectra are obtained from studies on radical species embedded in inert host matrices, usually noble gas lattices, where, generally, it is necessary to employ relatively high-energy irradiation (X-rays or γ-rays). In contrast the authors have mostly utilized neat materials or mixtures of neat materials to serve as precursors to and matrices for the radical species. This approach is worthy of more than passing interest since the PCl_{4} species is produced as a result of a secondary reaction at -196°, there being no evidence for its formation on irradiation of PCl_{3} diluted in a noble gas host lattice. The sources of irradiation utilized in this study are high- and low-pressure mercury lamps. These low-energy sources have proven useful also for generation of radicals from the group IVa organohalides. ${ }^{10}$

Finally, the knowledge of whether or not a reactive intermediate, particularly of a free radical type, exists under accessible laboratory conditions can be of significance to the course of synthetic chemistry. An important example is provided by the electric discharge synthesis of $\mathrm{B}_{2} \mathrm{Cl}_{4}$. It is now thought that BCl_{2} is not an important radical intermediate since spectroscopic studies have failed to reveal its presence even in very small quantities, although it was demonstrated that a neutral BCl intermediate appears important to the reaction. ${ }^{11}$ The synthetic potentialities of analogous BF have also been demonstrated recently. ${ }^{12,12 \mathrm{a}}$ The corresponding re-

[^1]

Figure 3. The high-field component of the doublet spectrum associated with PCl_{4} is seen at the right. Each of the doublet components is split into a septet. Furthermore, each of the components of the septet is further split into an additional septet. This is more clearly seen in the $5 \times$ blow-up on the left-hand side of the figure.
actions can also be related to PCl_{3}. The present demonstration of PCl_{2} and PCl_{4} suggests that other mechanisms can be important in the electric discharge production of $\mathrm{P}_{2} \mathrm{Cl}_{4}$ or PCl_{5} from $\mathrm{PCl}_{3} ;{ }^{13}$ an analogous consideration obtains for the formation of $\mathrm{P}_{2} \mathrm{~F}_{4}$ and PF_{5} from subjecting PF_{3} to gaseous discharges. ${ }^{14}$

Experimental Section

Samples of commercial reagent grade PCl_{3} were purified by standard high-vacuum line techniques. Infrared spectra obtained from the sample material showed that the concentrations of the most obvious impurities (such as HCl and POCl_{3}) were below the 1% level. That all the impurities were not removed, however, is apparent from the presence in most of the epr spectra of a weak doublet separated by about $1500 \mathrm{MHz}^{15}$ (Figures 1 and 2). These lines are attributed to atomic hydrogen ${ }^{16}$ and most likely arise from small residual quantities of HCl in the sample. However, presence or absence of H appears not to materially affect the results reported here.

Epr spectra were obtained with a commercially-available X-band spectrometer equipped with 100 kHz modulation and a cavity containing irradiation slot. The ultraviolet irradiation (principally at 370 nm) was produced by a 200 -W high-pressure mercury lamp. Some experiments were also done with a low-pressure mercury lamp whose principal output (2.5 W) is at 253.7 nm . No significant differences were noted in these spectra except that the hydrogen lines appeared to be stronger with the latter source. The spectrum shown in Figure 1 was produced by this lamp in order to show these lines more clearly. Many of the irradiations with the highpressure source and all with the low-pressure source were carried out at liquid nitrogen temperature outside of the cavity with the sample in a finger dewar flask which was later transferred to the epr spectrometer cavity. With the high-pressure lamp, spectra were also obtained as a function of time with the sample in the cavity. The buildup of spectral intensity, I, of the PCl_{2} Spectrum in neat PCl_{3} closely follows the equation $I=I_{0}\left[1-\exp \left(-t / T_{0}\right)\right]$, where I_{0} is the final intensity $(t \rightarrow \infty)$ and T_{0} is a parameter which, among other things, is characteristic of the experimental configuration. In this case, $T_{0} \sim 60 \mathrm{~min}$. Usually, with samples irradiated outside the cavity, the time of exposure was of the order of 4 hr , which is at least $8 T_{0}$ if one assumes the slits in the cavity wall pass only half of the radiation.

In neat PCl_{3}, a reasonably symmetrical doublet centered in the $g=2.00$ region is observed at liquid nitrogen temperatures (Figure 2). This signal was observed as a function of temperature between -196° and about -100°. The general line shape was seen to vary somewhat with temperature, with the higher field component becoming broader relative to the lower field component. No additional structure was noted in this doublet, as might be expected from interaction of ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ isotopes (where $I=3 / 2$). Symmetrically disposed about this doublet was another pair of lines, each component of which was a septet of septets. The higher field component is shown in Figure 3, with an enlargement of the central peak of this septet shown at the left in order to more clearly display the smaller splittings.

[^2]

Figure 4. Coordinate system and molecular geometry of the PCl_{2} radical.

Another spectrum was observed in the $g=2.00$ region in frozen mixtures of PCl_{3} with PF_{3} prepared by cocondensation of the gases in about $10: 1$, respectively. This is shown in Figure 1. With the usual line shape analysis ${ }^{17}$ for randomly oriented $S=1 / 2$ species, it is possible to assign the central doublet as the "perpendicular" component of the spectrum and the outermost pair of the lines (with structure) as the "parallel" components. These spectral features suggest that the g and A tensors have nearly axial symmetry.

The authors have also studied compounds of the type $\left(\mathrm{CH}_{3}\right)_{n}$ -PCl_{3-n}, where $n=1$ and 2 . In these cases, the spectra were rather similar to those described above, but with much less structure

Experimental parameters for the new radicals are summarized in Table I. Due to the anisotropy of the line shape it is believed that the relative measurement within a septet is more precise than the measurement between the outermost doublet components.

Table I. Experimental Parameters ${ }^{a}$

	g	$A(\mathrm{P}), \mathrm{MHz}$	$A(\mathrm{Cl}), \mathrm{MHz}$			
PCl_{2}	$2.001(\\|)$	$753(\\|)$	$41.5(\\|)$			
PCl_{4}	$2.021(\perp)$	$78(\perp)$	$0(\perp)$			
$\left(\mathrm{CH}_{3}\right)_{n} \mathrm{PCl}_{4-n}$	2.013	3398	175			

${ }^{a}$ Values are believed to be accurate to within $g \pm 0.005, A(\mathrm{P}) \pm$ $14 \mathrm{MHz}, A(\mathrm{Cl}) \pm 5 \mathrm{MHz} . \quad{ }^{b}$ Unresolved.

Results

PCl_{2}. In the mixture of PF_{3} with PCl_{3} the spectrum shown in Figure 1 can be analyzed into parallel and perpendicular components for the triatomic radical. A schematic representation of the molecular geometry is shown in Figure 4. The data indicate that the x and y components of the g tensor are essentially identical, as are the x and y components of the phosphorus hyperfine tensor, suggesting a $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ bond angle approaching 90°. No chlorine structure is observed in the perpendicular spectrum Indeed, the relative narrowness of this spectral region suggests that the value of $A_{\perp}(\mathrm{Cl})$ must be quite small and, in consequence for convenience, has been taken as equal to zero in the rest of this analysis
(17) G. F. Kokoszka and G. Gordon, "Techniques of Inorganic Chemistry," Vol. VII, H. B. Jonassen and A. Weissberger, Ed., Interscience Publishers, New York, N. Y., 1968, p 205, and references cited therein.

Figure 5. Schematic representation of the PCl_{4} radical.

The PCl_{2} observed in the neat PCl_{3} is broad and displays little structure The behavior of the spectrum as a function of temperature seems to rule out assignment as the freely-rotating species The g value measured in this case is also close to that obtained from the PCl_{2} in the $\mathrm{PF}_{3}-\mathrm{PCl}_{3}$ mixture. It seems likely that the differences in the spectral appearance of the PCl_{2} in these matrices are a result of local distortions; the spectrum of PCl_{2} in the xenon matrix is identical with that obtained in the neat material. The appearance of the spectrum and the magnetic parameters consequently determined are sensitive to small changes in the local environment, as has been noted in a number of studies. ${ }^{17}$
PCl_{4}. In the neat PCl_{3}, spectral components are found symmetrically disposed about the PCl_{2} doublet and are assigned to the species PCl_{4}. This assignment is based on the number of hyperfine components found in the spectrum as well as on a comparison of the data obtained for this case with those reported for the radical $\mathrm{PF}_{4} .4,5$ The spectrum appears to be almost isotropic at liquid nitrogen temperature. In cooling the sample to liquid hydrogen temperatures, the lines became slightly narrower. Thus, in spite of the almost isotropic appearance of the lines, the radical is probably not freely rotating, and careful examination of Figure 2 reveals an asymmetry in the line shape associated with the PCl_{4} spectrum.
The ratio of the doubly integrated spectrum of PCl_{2} to that for PCl_{4} is 7 ± 2, where the uncertainty is the maximum estimated value. This can be rationalized on the basis of the following reaction scheme.

$$
\begin{gathered}
\mathrm{PCl}_{3} \longrightarrow \mathrm{PCl}_{2} \cdot+\mathrm{Cl} \cdot \text { initiation } \\
\mathrm{Cl} \cdot+\mathrm{PCl}_{3} \longrightarrow \mathrm{PCl}_{2} \cdot+\mathrm{Cl}_{2} \\
\mathrm{Cl} \cdot+\mathrm{PCl}_{3} \longrightarrow \mathrm{PCl}_{4} \cdot \text { propagation }
\end{gathered}
$$

If it is assumed that the chlorine atom can react with the four constituent atoms of the PCl_{3} molecule in a statistical fashion, then the expected ratio is 7 , since for the net process

$$
8 \mathrm{PCl}_{3} \longrightarrow 7 \mathrm{PCl}_{2} \cdot+\mathrm{PCl}_{4} \cdot+3 \mathrm{Cl}_{2}
$$

The agreement of the experimental value with the value calculated with a simple reaction stoichiometry scheme suggests that this mechanism is reasonable. However,
it may be noted that Cl . combination can directly occur, so that the model proposed must be regarded as only a first approximation. When PCl_{3} is diluted in Xe in a ratio of $1: 9$, no evidence for the PCl_{4} species is observed. This result suggests that this host lattice serves as an effective means for promoting the combination of two chlorine atoms at the expense of the formation of PCl_{4}. In contrast to this, however, dilution in an "inert" matrix may be specific, since preliminary experiments with PCl_{3} diluted into an SnCl_{4} host lattice revealed formation of the PCl_{4} species. Here we may be witnessing an effective chain-transfer mechanism with involvement of formation and scission of $\mathrm{Sn}-\mathrm{Cl}$ bonds.
Organohalophosphines. The compounds studied include $\mathrm{CH}_{3} \mathrm{PCl}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PCl},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$, and $\mathrm{CH}_{3} \mathrm{OPCl}_{2}$. The general appearance of the spectra in the $g=2.00$ region for all of the radicals produced was quite similar to that obtained for the PCl_{2} radical in the $\mathrm{PF}_{3}-\mathrm{PCl}_{3}$ matrix. The parameters for all these species were similar to that obtained for PCl_{2}, but no additional chlorine structure was observed in any of these cases. Also, no spectral evidence for the methyl radical was observed. ${ }^{10}$ This could indicate that the organohalophosphines react rather readily with the methyl radical at -196°. An alternate explanation is that only phosphorus-chlorine bonds are cleaved in the chlorine-containing species with this irradiation source; for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$ it is presumed that there must be cleavage of the $\mathrm{P}-\mathrm{C}$ bond. In either case, this result is in sharp contrast with results on the organohalo group IV compounds, where the methyl radical quartet was usually the most prominent spectral feature, ${ }^{10}$ although secondary reactions resulting in the disappearance of this quartet were noted.
In $\mathrm{CH}_{3} \mathrm{PCl}_{2}$ a wider doublet was also observed, suggesting a species of the type $\left(\mathrm{CH}_{3}\right)_{n} \mathrm{PCl}_{4-n}$, where n may be 1 or 2 . No chlorine structure was observed in this case. The line width was about 100 G , but varied somewhat as a function of sample preparation and length of irradiation. The lack of any evidence of CH_{3} suggests a possible reaction quite analogous to that proposed from the PCl_{3} precursor may transpire.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{PCl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{PCl}+\mathrm{Cl} \\
& \mathrm{Cl} \cdot+\mathrm{CH}_{3} \mathrm{PCl}_{2} \longrightarrow \mathrm{CH}_{3} \dot{\mathrm{PCl}}{ }_{3}
\end{aligned}
$$

This is an interesting result in connection with frequent postulation of such reactive intermediates in the rad-ical-induced addition of PCl_{3} to hydrocarbons. ${ }^{18}$

Discussion

Bonding in PCl_{2}. An analysis of the stereochemistry and bonding in these phosphorus-containing radicals can be made by comparing the parameters derived from the experimental data with theoretical values. The PCl_{2} radical in the mixture $\mathrm{PCl}_{3}-\mathrm{PF}_{3}$ revealed the most detailed structure and will be analyzed first.
The phosphorus hyperfine coupling constants, $A_{\|}(\mathrm{P})$ $=753 \mathrm{MHz}$ and $A_{\perp}(\mathrm{P})=78 \mathrm{MHz}$, can be written in terms of an isotropic and an anisotropic contribution.

$$
\begin{gather*}
A_{\|}=A+2 B \tag{1}\\
A_{\perp}=A-B \tag{2}
\end{gather*}
$$

Assuming both $A_{\|}(\mathrm{P})$ and $A_{\perp}(\mathrm{P})$ to be positive, the val-
(18) J. T. G. Cadogan, Advan. Free Radical Chem., 2, 203 (1967).
ues of $A(\mathrm{P})$ and $B(\mathrm{P})$ are 303 and 225 MHz , respectively. The value expected for $A(\mathrm{P})$, if the electron were entirely within a phosphorus 3 s orbital $\left[A_{0}(\mathrm{P})\right]$ lies somewhere in the range of 10,178 to $13,000 \mathrm{MHz}$, while the value of $B(\mathrm{P})$ for an electron entirely within a 3 p orbital [$B_{0}(\mathrm{P})$] on phosphorus is somewhere between 287 and 367 MHz . ${ }^{19,20}$ The small value of $A(\mathrm{P})$ for PCl_{2} suggests relatively little $3 s$ character in the unpaired electron wave function, ${ }^{21}$ while the value for the per cent phosphorus 3 p character is from about 78 to $61 \% .{ }^{22}$ It seems likely then that as a first approximation, the unpaired electron can be regarded as being primarily in a phosphorus 3 p orbital. This orbital is likely to lie perpendicular to the molecular plane, an assignment consistent with that made for the PH_{2} radical. ${ }^{23}$ Other choices of relative sign might be made in eq 1 and 2. If $A_{[}(\mathrm{P})$ is chosen positive and $A_{\perp}(\mathrm{P})$ negative, then $A(\mathrm{P})=199$ and $B(\mathrm{P})=-277$. The choice of $A_{\|}(\mathrm{P})<$ $0, A_{\perp}(\mathrm{P})>0$ leads to $A(\mathrm{P})=-199, B(\mathrm{P})=277$; and finally both $A_{\|}(\mathrm{P})$ and $A_{\perp}(\mathrm{P})$ negative leads to $A(\mathrm{P})=$ $-303, B(\mathrm{P})=-225$. These values obtained for $A(\mathrm{P})$ and $B(\mathrm{P})$ with the experimental parameters of varying sign do not significantly alter the conclusion (vide infra) that as a first approximation the unpaired electronic density is in the phosphorus 3p orbital.

With this preliminary analysis, the radical species may be analyzed in terms of the coordinate system defined in Figure 4. The phosphorus-chlorine σ bonds lie in the $x y$ plane. The unpaired electron lies in the p_{z} orbital perpendicular to this plane. The p_{z} orbital on phosphorus can form molecular orbitals with the two chlorine p_{z} orbitals. The amount of time spent by the unpaired electron in these orbitals may also be estimated from the experimental data. From eq 1 and 2 and the previous assumption $A_{\perp}(\mathrm{Cl})=0$, the values $A(\mathrm{Cl})=B(\mathrm{Cl})=13.8 \mathrm{MHz}$ are obtained. If the unpaired electrons were entirely within a 3 s orbital on chlorine, a value of about 5000 MHz would be expected for $A(\mathrm{Cl})$, while a value of about 137 to 176 MHz is expected if the unpaired electron is entirely in a chlorine 3 p orbital. ${ }^{19,20}$ The values derived from the data suggest about 10% chlorine 3 p character but essentially no 3 s character. The origin of the small isotropic (s-like) interaction has been discussed by Atkins and Symons in their excellent book, ${ }^{22}$ and the recent papers of Hunter and Symons ${ }^{21}$ and Higuchi. ${ }^{6}$ These contributions will be further considered below.

The results of a somewhat more detailed analysis of the hyperfine splitting are presented in Table II. The values of $B_{0}{ }^{\prime}$ and $B_{0}{ }^{\prime \prime}$ are two theoretical values for total occupancy in the phosphorus or chlorine 3p orbitals using different wave functions. ${ }^{19,20}$ There are four cases to be considered, depending on the value for B as discussed above and the values for B_{0} cited elsewhere. Finally, it seemed appropriate to obtain normalized values in the following fashion. With a given $B(\mathrm{P}), B(\mathrm{Cl}), B_{0}(\mathrm{P})$, and $B_{0}(\mathrm{Cl})$, the percentage time spent on the phosphorus atom could be estimated from the ratio $B(\mathrm{P}) / B_{0}(\mathrm{P})$, and on each chlorine atom from the

[^3]Table II. π-Bonding Parameters for PCl_{2}

	$B_{0}{ }^{\prime}, \mathrm{MHz}$	$B_{0}{ }^{\prime \prime}, \mathrm{MHz}$
P	367	287
Cl	176	137
Case 1		
$B(\mathrm{P})=225^{a}$		
$B(\mathrm{Cl})=13.8^{a}$	0.613	0.783
$B(\mathrm{P}) / B_{0}(\mathrm{P})$	0.078	0.101
$B(\mathrm{Cl}) / B_{0}(\mathrm{Cl})$	0.797	0.795
$\mathrm{NFSD}(\mathrm{P})$		
Case 2		
$B(\mathrm{P})=277^{a}$	0.755	0.965
$B(\mathrm{Cl})=13.8^{a}$	0.078	0.101
$B(\mathrm{P}) / B_{0}(\mathrm{P})$	0.829	0.829
$B(\mathrm{Cl}) / B_{0}(\mathrm{Cl})$		
$\mathrm{NFSD}(\mathrm{P})$		

${ }^{a} \mathrm{MHz}$.
ratio $B(\mathrm{Cl}) / B_{0}(\mathrm{Cl})$. The sum of $B(\mathrm{P}) / B_{0}(\mathrm{P})+2 B$ $(\mathrm{Cl}) / B_{0}(\mathrm{Cl})$ is generally not equal to one. Since the electron is assumed to be localized on a single molecular fragment, the ratio $\left[B(\mathrm{P}) / B_{0}(\mathrm{P})\right] /\left\{B(\mathrm{P}) / B_{0}(\mathrm{P})+2[B\right.$ $\left.\left.(\mathrm{Cl}) / B_{0}(\mathrm{Cl})\right]\right\}=$ normalized fractional spin density (NFSD) should be a more reasonable measure of the amount of time the unpaired electron spends on the central phosphorus atom. It may be noted that with either set of theoretical values, the normalized fractional spin density (NFSD) is about 0.8 . This would suggest that the appropriate terms in the two sets of wave functions are related by a nearly constant scaling factor. ${ }^{20}$ Thus, if sufficient experimental data are obtained from molecules containing atomic consituents with nonzero nuclear moments, the most reliable value of B_{0} may ultimately be an experimental value.

As an additional point of illustration, a similar calculation has also been carried out with the data available for $\mathrm{NF}_{2}{ }^{24,25}$ In this case, there are two possible choices for sign for the fluorine hyperfine structure and the values of $\operatorname{NFSD}(\mathrm{N})$ range from 0.771 to 0.846 . In this case, however, the relative sign is known and the proper value is ~ 0.85. From a comparative point of view, the NFSD on the \mathbf{P} atom in PCl_{2} is nearly the same as the NFSD on the N atom in NF_{2}.

In PCl_{2}, as in NF_{2} and PF_{2}, the unpaired electron most probably occupies a ${ }^{2} \mathrm{~B}_{1}$ molecular orbital; ${ }^{9}{ }^{9}{ }^{24}$ this orbital consists of two in-phase chlorine p_{z} orbitals and an out-of-phase phosphorus p_{z} orbital. The deviation of the g factor from the free electron value may be considered as due primarily to spin-orbit interactions with orbitals of symmetry B_{2} and A_{1}. These are expected to cause a deviation of g_{x} and g_{y} from the free electron value (g_{e}) and account for $g_{\perp}>g_{e}$. On the other hand, Farmer, Gerry, and McDowell ${ }^{24}$ point out that a deviation of g_{z} from g_{e} can occur through an A_{2} molecular orbital. In PCl_{2}, as in NF_{2}, the irreducible representation A_{2} in point group $\mathrm{C}_{2 \mathrm{v}}$ does not contain any of the phosphorus s or p orbitals. In agreement with this prediction, the measured value for g_{2} is g_{e}.

In the isotropic radical PF_{2}, the observed isotropic hyperfine splitting from the fluorine atoms is about 180 $\mathrm{MHz} .^{8}$ For PCl_{2}, the corresponding isotropic chlorine

[^4]hyperfine splitting is 13.8 MHz or about 5 G . If the PCl_{2} and PF_{2} radicals had essentially the same structure and the same mechanism was operative in producing halogen hyperfine interactions, then the expected ratio of the isotropic splittings should be about 10 . The observed value of 12 can be taken as an indication that the two radicals have a similar geometry and orbital composition.
Bonding in PCl_{4}. The spectral components that are associated with the PCl_{4} species have the feature of a large hyperfine splitting. Since the contribution from 3 p orbital dipolar interaction is expected to be under 400 MHz , the large observed splitting of over 3000 MHz can be taken as an indication of a large contribution from the 3 s orbitals in the wave function of the unpaired electron. Comparison of the experimental value of $A(\mathrm{P})$ with the theoretical value of $A_{0}(\mathrm{P})$, the splitting expected if the electron were totally within a 3 s orbital, indicates that the unpaired electron occupies an orbital which contains approximately $33 \% 3 \mathrm{~s}$ character. The simplest structure which fulfills this requirement is a trigonal bipyramid with the unpaired electron in an equatorial sp^{2} hybrid, as illustrated in Figure 5. The observation of two sets of equivalent chlorines is consistent with this model.
The data do not require that the molecular geometry be rigorously trigonal bipyramidal ${ }^{26}$ but the orbital composition will first be examined on that basis. Later, deviation from this symmetry will be considered.
Within the framework of a hybrid orbital theory utilizing linear combinations of atomic orbitals and assuming two-center bonding, the five orbitals on the phosphorus can be taken as follows. ${ }^{27}$
\[

$$
\begin{gathered}
\phi_{1}=\frac{1}{\sqrt{3}}\left(\mathrm{~s} \sin \alpha-\mathrm{d}_{2^{2}} \cos \alpha\right)+\frac{1}{\sqrt{6}} \mathrm{p}_{x} \\
\phi_{2}=\frac{1}{\sqrt{3}}\left(\mathrm{~s} \sin \alpha-\mathrm{d}_{z^{2}} \cos \alpha\right)-\frac{1}{\sqrt{6}} \mathrm{p}_{x}+\frac{1}{\sqrt{2}} \mathrm{p}_{v} \\
\phi_{3}=\frac{1}{\sqrt{3}}\left(\mathrm{~s} \sin \alpha-\mathrm{d}_{2^{2}} \cos \alpha\right)=\frac{1}{\sqrt{6}} \mathrm{p}_{z}-\frac{1}{\sqrt{2}} \mathrm{p}_{v} \\
\phi_{4}=\frac{1}{\sqrt{2}}\left(\mathrm{~s} \cos \alpha+\mathrm{d}_{2^{2}} \sin \alpha\right)+\frac{1}{\sqrt{2}} \mathrm{p}_{z} \\
\phi_{\overline{\mathrm{j}}}=\frac{1}{\sqrt{2}}\left(\mathrm{~s} \cos \alpha+\mathrm{d}_{z^{2}} \sin \alpha\right)-\frac{1}{\sqrt{2}} \mathrm{p}_{z}
\end{gathered}
$$
\]

The first three orbitals are along the three equatorial bonds, while the latter two correspond to the axial bonds. For convenience, the orbital containing the unpaired electron will be taken as ϕ_{1}, the orbital along the positive x axis. The experimental data may now be examined. As noted previously, the molecule does not appear to be freely rotating at liquid nitrogen temperatures. This circumstance coupled with the incompletely resolved Cl isotopic contributions mentioned earlier, results in diminished resolution of the individual spectral components as compared to that obtained for PF_{4}. Thus, the dominant spectral components in Figures 2 and 3 may be associated with the perpendicular portion of the PCl_{4} spectrum.

The unpaired electron interacts with the phosphorus

[^5]nucleus by means of the Fermi contact term, which produces an isotropic interaction and a dipole-dipole term. The latter term may be associated with the p or d character of the wave function. If the unpaired electron were totally within a p orbital, this interaction would produce a splitting of about 300 MHz . The value of the dipole-dipole interaction between an unpaired electron in a 3d orbital and the phosphorus nucleus has not been calculated, but comparison with typical values for transition metal ions suggests it would be under 600 $\mathrm{MHz} .{ }^{28}$ Thus, the maximum contribution from the p and d portions of the wave function would be significantly lower than the observed value of A. Hence the parallel portion of the spectrum can be separated from the perpendicular portion by at most a few hundred MHz , that is, from eq 1 and 2 , a difference of $3 B$. It would be difficult to resolve the parallel portions except at one end of the seven-line pattern, and there available signal-to-noise levels preclude direct observation.

Thus, with the wave function listed above, the d portion of ϕ_{1} cannot be directly estimated; however, the s portion of the wave function makes up some 30 to 40%. Because of the specified relationship between coefficients in the $D_{3 h}$ wave function, the amount of d character must be small if this analysis holds true.

The question of the deviation from trigonal bipyramidal geometry might be considered using a qualitative electrostatic approach. ${ }^{29}$ In the trigonal bipyramidal geometry, the angle between axial bonds is 180°, while the angle between equatorial bonds is 120°. This is the geometry assumed by five equal point charges constrained to move on the surface of a sphere. If the charge on an equatorial point is reduced to zero, the angle between the "axial" charges would correspondingly decrease from 180° to $109^{\circ} 54^{\prime}$ in the plane defined by the "axial" charges and the charge which is being reduced to zero. Similarly, the angle between the two equatorial bonds would decrease from 120° to $109^{\circ} 54^{\prime}$. Thus when an "equatorial" charge becomes zero, the four remaining charges have assumed a tetrahedral geometry. Alternatively, if the equatorial charge were not reduced to zero, but rather increased over its original value, it then should be expected that the $\mathrm{Cl}($ axial $)-\mathrm{P}-\mathrm{Cl}($ axial $)$ angle will become smaller. In the limit, a square pyramidal geometry $\left(\mathrm{C}_{4 \mathrm{v}}\right)$ should be assumed. It is important to emphasize that these data are consistent with a $\mathrm{C}_{2 v}$ symmetry which can approach either the $\mathrm{D}_{3 \mathrm{~b}}$ or $\mathrm{C}_{4 \mathrm{v}}$ limit.

There is some reason to believe that the PCl_{4} radical is slightly closer to the $\mathrm{C}_{4 \mathrm{v}}$ extreme than PF_{4}. An examination of Higuchi's tables ${ }^{6}$ suggests that a smaller $A(\mathrm{P})$ corresponds to a geometry that tends to less open structure, a conclusion obtained with both valence bond and molecular orbital calculations. However, Higuchi's conclusions concerning 3d orbital participation may not provide the only explanation of this phenomenon. Berry, et al., ${ }^{2 b}$ discuss the relation between the simple electrostatic model and the molecular orbital approach, indicating that the relationship between the models is somewhat closer than a cursory examination would suggest. Furthermore, they have considered trigonal bipyramidal \leftrightarrow square pyramidal interconversions in higher symmetry molecules. In the PCl_{4} case it should

[^6]not be surprising if the geometry were intermediate between these two extremes. Berry, et al., do not believe 3d orbital participation is important in the occupied orbitals.

Bonding in the Organohalophosphines. The argument presented above for the bonding in PCl_{4} can also be used for the radical produced in irradiated $\mathrm{CH}_{3}-$ PCl_{2}. The large hyperfine splitting of the phosphorus strongly implies a geometry similar to the fully halogenated radicals. This species may be formulated as $\mathrm{CH}_{3} \mathrm{PCl}_{3}$, where the dominant contribution to the line width is the unresolved chlorine splittings. It may be noted that some variation of line width was observed, depending on sample history, and is suggestive of important lattice effects. Further, the phosphorus hyperfine splitting is about 10% lower than in PCl_{4}. The result may be rationalized with a simple model. Again, it is assumed that the geometry is nearly trigonal bi-
pyramidal and that the orbital composition of the equatorial PCl bond would be expected to be comparable in $\mathrm{CH}_{3} \mathrm{PCl}_{3}$ and in PCl_{4}. The more electropositive $\mathrm{P}-\mathrm{CH}_{3}$ bond would likely have more s character than the $\mathrm{P}-\mathrm{Cl}$ bond in the remaining equatorial bond. ${ }^{2 \mathrm{a}}$ Thus, the amount of s character in the orbital or the unpaired electron should be greater for PCl_{4} than $\mathrm{CH}_{3^{-}}$ PCl_{3}. This is a possible origin of the greater value of $A(\mathrm{P})$ in PCl_{4} compared to the organohalo radical. Difference in geometry may also influence the relative values. Again, with reference to the Higuchi tables, the smaller value of $A(\mathrm{P})$ would suggest a geometry slightly closer to $\mathrm{C}_{4 \mathrm{v}}$ for $\mathrm{CH}_{3} \mathrm{PCl}_{3}$ than for PCl_{4}. Indeed, since the values for $A(\mathrm{P})$ decrease for the series $\mathrm{PF}_{4}, \mathrm{PCl}_{4}$, and $\mathrm{CH}_{3} \mathrm{PCl}_{3}$, it is not unreasonable to associate this change with relative electronegativities and a sterically more closed structure. The question of 3d orbital participation must be left open as before.

Pentacoordinate Silicon Derivatives. IV. ${ }^{1}$ Alkylammonium Siliconate Salts Derived from Aliphatic 1,2-Diols

Cecil L. Frye
Contribution from the Chemical Research Department, Dow Corning Corporation, Midland, Michigan 48640. Received September 6, 1969

Abstract

Although stable, easily isolable, extracoordinate silicon derivatives of catechol and other aromatic 1,2diols are well known, the literature contains relatively little information concerning analogous derivatives of aliphatic 1,2-diols. This paper describes the preparation of such a series consisting of alkylammonium siliconate salts derived from 1,2-diols as diverse as ethylene glycol, pinacol, and perfluoropinacol; also included are several examples of related α-hydroxycarboxylic acid derivatives of silicon. Compared to the catechol siliconates, the aliphatic diol siliconates are generally less robust thermally and solvolytically, except for the perfluoropinacol derivatives, in which the pentacoordinate silicon hybridization is maintained even in media as acidic as glacial acetic acid. Because of their extraordinary solvolytic stability, these perfluoropinacol siliconate anions are of special significance, since they should permit solution studies of pentacoordinate silicon species uncomplicated by equilibria involving merely tetracoordinate structure. Especially interesting was the chemistry of the novel strained heterocyclic $\mathrm{Ph}(\mathrm{OMe}) \mathrm{SiOCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}$. In the presence of suitable bases it underwent rapid ligand redistribution to yield a pentacoordinate siliconate anion bearing two of the bidentate pinacoloxy moieties (i.e., $\mathrm{PhSi}-\left(\mathrm{OCMe}_{2}-\right.$ $\left.\mathrm{CMe}_{2} \mathrm{O}\right)_{2}$). However, with alkanolamine bases possessing the requisite structural features, intermediates bearing only one pinacoloxy moiety were obtained. These intermediates are believed to be spirocyclic pentacoordinate structures in which a strategically appended donor moiety (i.e., a dangling aminoalkoxy group) has become intramolecularly σ-bonded to the nearby electrophilic silicon center. The extent to which anchimeric coordination of this type occurs was shown to be dependent upon both the length of the aminoalkoxy group and the degree of N alkylation.

Stable, easily isolable, extracoordinate silicon derivatives of aromatic 1,2-diols have been described in considerable detail; ${ }^{2}$ however, the literature contains very little information concerning related derivatives of aliphatic 1,2-diols. The presence of such species in solution was inferred by Meerwein ${ }^{3}$ and convincingly demonstrated by Müller and Heinrich; ${ }^{4}$ the latter
(1) Paper III: C. L. Frye, G. A. Vincent, and G. L. Hauschildt, J. Amer. Chem. Soc., 88, 2727 (1966).
(2) (a) C. L. Frye, ibid., 86, 3170 (1964; (b) F. P. Boer, J. J. Flynn, and J. W. Turley, ibid., 90, 6973 (1968); (c) C. L. Frye, U. S. Patents $3,355,477$ and $3,360,525$ (1967).
(3) H. Meerwein, Justus Liebigs Ann. Chem., 476, 113 (1929); Angew. Chem., 63, 489 (1951).
authors also presented evidence for the isolation of two alkali metal pentacoordinate siliconate salts (I and II). Reported herein are facile preparative routes to a related

I

II
series of easily isolable crystalline alkylammonium
(4) R. Müller and L. Heinrich, Chem. Ber., 94, (8) 1943 (1961).

[^0]: (1) (a) Presented in part before the 154th National Meeting of the American Chemical Society, Chicago, Ill., Sept 1967; (b) National Bureau of Standards, Washington, D. C.; (c) State University of New York, Plattsburgh, N. Y.

[^1]: (10) F. E. Brinckman, G. F. Kokoszka, and N. K. Adams, J. Res. Nat. Bur. Stand., A, 73, 201 (1969).
 (11) R. T. Holzmann and W. F. Morris, J. Chem.Phys., 29, 677 (1958).
 (12) P. L. Timms, J. Amer. Chem. Soc., 89, 1629 (1967).
 (12a) Note Added in Proof. Particularly significant to these considerations is the recent report by W. Nelson and W. Gordy, J. Chem. Phys., 51, 4710 (1969), describing the detection and structural determination of BF_{2} radical. These authors generate this $\mathrm{C}_{2} \mathrm{v}$ species by γ-irradiation of solid xenon containing small amounts of BF_{3}, but suggest it would be "possibly feasible to observe the microwave spectrum of BF_{2} radicals in the gaseous state." Such a line of investigation is of great interest from the standpoint of elucidating synthetic consequences of treating either gaseous BF or BF_{2} intermediates with common substrates. For example, as an interesting alternate route to the postulated formation of $\mathrm{B}_{2} \mathrm{~F}_{4}$ by BF insertion reaction with $\mathrm{B}-\mathrm{F}$ bonds in BF_{3}, it would be instructive to ascertain whether a similar catenation process can occur via simple self-condensation of BF_{2}.

[^2]: (13) W. L. Jolly, C. B. Lindahl, and R. W. Kopp, Inorg. Chem., 1, 958 (1962); A. A. Dandoval and H. C. Moser, ibid., 2, 27 (1963).
 (14) F. E. Brinckman and G. Gordon, Abstracts, 4th Middle Atlantic Regional Meeting of the American Chemical Society, Washington, D. C., Feb 1969, p 41.
 (15) One gauss $=1 \times 10^{-4}$ tesla $\approx 2.8 \mathrm{MHz}$.
 (16) F. J. Adrian, E. L. Cochran, and V. A. Bowers, Advances in Chemistry Series, No. 36, American Chemical Society, Washington, D. C., 1962, p 50.

[^3]: (19) J. R. Morton, Chem. Rev., 64, 453 (1964).
 (20) C. M. Hurd and P. Coodin, J. Phys. Chem. Solids, 28, 523 (1967).
 (21) T. F. Hunter and M. C. R. Symons, J. Chem. Soc., A, 1170 (1967).
 (22) P. W. Atkins and M. C. R. Symons, "The Structure of Inorganic Radicals," Elsevier Publishing Co., Amsterdam, 1966.
 (23) R. L. Morehouse, J. J. Christiansen, and W. Gordy, J. Chem. Phys., 45, 1747 (1966).

[^4]: (24) J. B. Farmer, M. C. L. Gerry, and C. A. McDowell, Mol. Phys., 8, 253 (1964).
 (25) P. H. Kasai and E. B. Whipple, ibid., 9, 497 (1965).

[^5]: (26) R. W. Fessenden and R. H. Schuler, private communication quoted by Higuchi (ref 6 of this paper).
 (27) F. A. Cotton, "Chemical Applications of Group Theory," Interscience Publishers, New York, N. Y., 1963, p 116.

[^6]: (28) B. R. McGarvey, J. Phys. Chem., 71, 51 (1967).
 (29) R. J. Gillespie and R. S. Nyholm, Quart. Rev., 11, 339 (1957).

